Harold Jeffreys’ Theory of Probability revisited

نویسندگان

  • Christian P. Robert
  • Nicolas Chopin
  • Judith Rousseau
چکیده

Published nearly seventy years ago, Jeffreys’ Theory of Probability (1939) has had a unique impact on the Bayesian community and is now considered to be one of the main classics in Bayesian Statistics as well as the initiator of the objective Bayes school. In particular, its advances on the derivation of noninformative priors as well as on the scaling of Bayes factors have had a lasting impact on the field. However, the book reflects the characteristics of the time, especially in terms of mathematical rigour. In this paper, we point out the fundamental aspects of this reference work, especially the thorough coverage of testing problems and the construction of both estimation and testing noninformative priors based on functional divergences. Our major aim here is to help modern readers in navigating in this difficult text and in concentrating on passages that are still relevant today.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Statistical Education of Harold Jeffreys

The paper considers the statistical work of the physicist Harold Jeffreys. In 1933–4 Jeffreys had a controversy with R.A. Fisher, the leading statistician of the time. Prior to the encounter, Jeffreys had worked on probability as the basis for scientific inference and had used methods from the theory of errors in astronomy and seismology. He had also started to rework the theory of errors on th...

متن کامل

The Behrens-Fisher problem revisited: A Bayes-frequentist synthesis

The Behrens-Fisher problem concerns the inference for the difference between the means of two normal populations whose ratio of variances is unknown. In this situation, Fisher’s fiducial interval differs markedly from the Neyman-Pearson confidence interval. A prior proposed by Jeffreys leads to a credible interval that is equivalent to Fisher’s solution, but carries a different interpretation. ...

متن کامل

Could Fisher, Jeffreys and Neyman Have Agreed on Testing?

Ronald Fisher advocated testing using p-values, Harold Jeffreys proposed use of objective posterior probabilities of hypotheses and Jerzy Neyman recommended testing with fixed error probabilities. Each was quite critical of the other approaches. Most troubling for statistics and science is that the three approaches can lead to quite different practical conclusions. This article focuses on discu...

متن کامل

Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random

The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...

متن کامل

Invariance of Posterior Distributions under Reparametrization

In 1946, Sir Harold Jeffreys introduced a prior distribution whose density is the square root of the determinant of Fisher information. The motivation for suggesting this prior distribution is that the method results in a posterior that is invariant under reparametrization. For invariant statistical models when there is a transitive group action on the parameter space, it is shown that all rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008